
A Survey of Programmers’ 
Practices for Handling  
Complexity in Creative  
Coding

olLIE bown

Design Lab, University of Sydney, Darlington, NSW, 2006 
Australia

oliver.bown@sydney.edu.au

ROB SAUNDERS

Design Lab, University of Sydney, Darlington, NSW, 2006 
Australia

rob.saunders@sydney.edu.au

MARTIN TOMITSCH

Design Lab, University of Sydney, Darlington, NSW, 2006 
Australia

martin.tomitsch@sydney.edu.au

Keywords: Creative Coding, Generative Design, 
Complexity

Creative coding has goals, methods and tools that dis-
tinguish it from other forms of programming practice. A 
number of creative coding practitioners regularly engage 
with complex systems in creative applications, such 
as neural networks, genetic evolution, ecosystems and 
reaction-diffusion equations. Such systems are conceptu-
ally opaque and hard to manipulate, but we know little 
about the ways in which creative coders handle them. In 
this paper we present findings from a survey of creative 
coders regarding how they deal with complexity in their 
work. We discuss four issues of interest: time-demands 
of specific activities; sources of knowledge and approach-
es to problem solving; approaches to exploration; and 
information-seeking versus intuitive styles of working. 
Our results provide an initial characterisation of creative 
coding strategies and suggest how tools could be better 
adapted to their needs.

2
0
1
4
.
x
C
o
A
x
.
o
r
g

mailto:oliver.bown%40sydney.edu.au?subject=
mailto:rob.saunders%40sydney.edu.au?subject=
mailto:martin.tomitsch%40sydney.edu.au?subject=
http://2014.xCoAx.org


xCoAx 2014 42

1.Introduction

Creative coding or creative computing has begun to 
emerge as a field that can be distinguished from other 
types of computer programming, based on the nature of 
the practice, the tools used and the methods employed 
in its production (McLean and Wiggins, 2010; Turkle and 
Papert, 1990; Mitchell and Bown, 2013). Researchers are 
beginning to focus on these areas in order to understand 
how creative coders can get the most out of what they do, 
either through new tools or new forms of practice. 

As an example, the idea of merging code and GUI ele-
ments has been explored in many contexts, leading to 
a more flexible integration between writing code and 
exploring its parameter-space: in visual programming 
languages, such as MaxMSP and Pure Data, GUI elements 
sit within the visual programming paradigm; in hybrids, 
such as Field, GUI elements can be inserted into blocks of 
code; in web-based environments, such as Khan’s Code 
Academy, variables such as numbers and colours in the 
code can be interacted with to change their values; and 
in add-ons to regular IDEs, such as the Processing envi-
ronment optional add-on, Tweak Mode, the same effect 
is achieved working directly on the Java code. The utility 
of such tools are easily inferred from their popularity, but 
more detailed studies of what transformative effects they 
have on creative coding practice are also required (see 
Mitchell and Bown, 2013 for some recent analysis).

2.Background

In previous work examining the potential to apply com-
plex dynamics from models of nature to creative goals 
(McCormack and Bown 2009, Bown and McCormack 
2010), a key observation was that, whilst rich biological 
models – such as those of ecosystems evolution – had 
creative value, the biggest obstacle to their successful use 
was the difficulty of working with their unwieldy com-
plexity. Our autobiographical accounts of programming 
such systems showed that we often didn’t have good 
enough information about what the system was doing 
to be able to make clear informed creative choices about 
what steps to take next. 

All software programmers must take steps to discover 
things about their running programs that they cannot 
tell from the code alone. This often involves gleaning 
information that is additional to the output itself. Thus 



xCoAx 2014 43

a programmer animating a flock may already have the 
flock to look at on their screen, but they may add print 
statements to reveal other data – in the form of text – to 
the screen or to a console output, view variables in a de-
bugger, draw additional layers on the animation, such as 
velocity vectors or the flock’s centroid, or use other data 
visualisation methods such as histograms or scatter-
plots. Some tools exist for these purposes, such as debug-
gers and convenient libraries for visualising data. Other 
forms of data discovery need to be added by the program-
mer. For example, typically the programmer would draw 
visual layers such as velocity vectors themselves, but they 
could equally use a third-party physics library that pro-
vides visualisation layers for them.

As well as gleaning information about their programs, 
creative coders regularly iterate through a number of 
designs in search of specific outcomes. An additional 
form of information acquisition therefore comes in the 
form of partial automation of their search process. The 
flock programmer may have a number of real-valued 
variables that they wish to explore in order to find the 
system’s best settings. In that case they may explore 
this parameter space using one of the interactive meth-
ods described above. Alternatively, they could perform a 
parameter sweep, in which a large number of parameter 
values are input in order to produce many different pos-
sible animations (perhaps generated overnight while the 
programmer sleeps), which can be quickly examined. A 
more advanced approach would be to conduct some kind 
of automated search for preferred parameters, but this 
requires the flock programmer to define in the program 
what is being sought. Whilst all of these approaches are 
feasible, they require increasing levels of input to achieve 
desirable results, sometimes involving significant design 
challenges in their own right.

Finally, information about the workings of a program 
comes not only from isolated inspection of the program 
itself but by learning from other people: the flock pro-
grammer has likely discovered the classical flocking 
algorithms through books or lectures or discussions with 
colleagues, and may also find out the precise implemen-
tation and specific parameter values that way. If a pro-
grammer’s code produces unexpected results, they may be 
able to understand why through discussion and compari-
son with others’ results. This form of knowledge acquisi-



xCoAx 2014 44

tion is evidently ubiquitous throughout programming 
practice: we would not even know of the existence and ap-
plications of cellular automata, reaction-diffusion equa-
tions or neural networks without learning about them 
from others. It is rare that someone makes an original 
discovery as significant as one of these canonical forms. 

In this paper we present the initial findings from a 
study that sets out to understand how practitioners ap-
proach knowledge acquisition and manage their under-
standing of their code when interacting with software 
objects. Our focus is on the more complex end of topics 
that creative coders work with: concepts from computer 
science such as genetic algorithms, reaction-diffusion 
systems and self-organising behaviour. For the purpose 
of this discussion we loosely refer to this set of elements 
as ‘complex systems’ (although note that ‘complex sys-
tems science’ refers to an overlapping but distinct set of 
systems). 

Complex systems have in common that certain as-
pects of their behaviour are opaque to the user. Although 
this could be said of computer programs in general, 
complex systems push the cognitive capacities of the pro-
grammer to the point where it is not viable to maintain 
a mental model of what the system is doing at all levels 
of scale, whereas for many acts of programming the 
programmer is able to maintain a clear understanding 
of the macroscopic effects of specific programmed behav-
iours. With complex systems, the system changes and in-
teracts in ways that are not clearly predictable or trans-
parent. For example, in artificial evolution the structure 
of a computational component, the genotype, is modified 
by a process of selection and random mutation, and its 
outcome may not be easily predicted from the design of 
the process. In this way, surprising designs come about, 
such as those of Sims’ famous evolved virtual creatures 
(Sims, 1994). Complex systems are, as their name implies, 
hard to work with. 

3.Study

For all of the strategies mentioned above, there is little 
information on the extent to which creative coders use 
them, how they enhance creative search, and where and 
when they are most effective. Through this study we set 
out to begin to understand what aspects of the program-
ming process support or hinder creative development 
using these systems.



xCoAx 2014 45

The study was run as an online survey.1 Participants 
were asked to respond to the survey only if they worked 
with complex systems, a list of examples of which were 
provided at the start of the survey. Participants were 
asked a number of background questions regarding their 
training, experience, the tools they use, and the applica-
tion areas they work in. They were then presented with 
a number of statements with Likert-scale response op-
tions (strongly disagree, disagree, neutral, agree, strongly 
agree) on a range of issues from their approach to debug-
ging, to their experience of surprise. All questions had the 
option of adding additional comments. 

As a provisional look at practice, the questions covered 
a broad range of topics and were designed to give clues 
as to where to look in further more detailed research. 
Our aim was to use the current survey results to identify 
compelling areas of further study.

4.Results

Participants were contacted via special interest mail-
ing lists catering for communities working creatively 
with code (with which we include visual programming 
environments such as MaxMSP), such as the Process-
ing forum and the Computer Arts Society mailing list. 
110 respondents started the survey and 39 completed it 
entirely. All questions were optional and no responses 
were discarded. The average age of respondents was 41.1 
years. Of those who chose to respond, 53 were male and 7 
were female, confirming a strong and widely recognised 
gender imbalance in creative electronic arts. 

We divide results into four distinct areas: time-de-
mands of specific activities; sources of knowledge and 
approaches to problem-solving; approaches to explora-
tion; and information-seeking versus intuitive styles of 
working. We present results in each of these areas inter-
spersed with some discussion.

4.1.Time demands of specific activities

One of the sets of questions with the most unanim-
ity concerned the time-burden of different parts of the 
programming process. Most participants (40.5% SA, 40.5% 
A)2 reported that along with the coding of the system 
itself, “a significant proportion of time was spent explor-
ing spaces of possibilities (e.g., parameter spaces) of the 
system”. Likewise, a moderate number of participants 

2 For reporting statistics we give the 
percentage of respondents stating 
Strongly Agree (SA), Agree (A), Neutral 
(N), Disagree (D) and Strongly Disa-
gree (SD).

1 The full survey, with fully an-
onymised numerical only results, 
can be found at: http://2014.xcoax.
org/files/070.zip

http://2014.xcoax.org/files/070.zip
http://2014.xcoax.org/files/070.zip


xCoAx 2014 46

(13% SA, 25% A 22%N) reported that it was hard to find 
the system’s ‘sweet-spots’, whilst the vast majority (60% 
SA, 15% A) reported that they had experiences of finding 
surprising behaviour. A moderate number of participants 
(19% SA, 17% A, 19% N) also reported spending significant 
time on writing unit tests. Two participant’s comments 
suggest that the central challenge of their work lay out-
side of the domain of programming per se:

“The system was ‘easy’ to implement in the sense that 
there were no new technical breakthroughs required 
in order to make it work. However, figuring out how to 
make it work aesthetically was complex and time con-
suming.” (Respondent 50)

“I definitely understood the low-level behaviors, but was 
continuously amazed by higher-level emergent behav-
iors.” (Respondent 56)

This suggests that it may make sense to distinguish 
aesthetic search and/or design from the act of program-
ming in creative coding. But another participant’s re-
marks related to the difficulty of setting debugging issues 
apart from design in this context:

“I did not understand what was going on due to com-
plex bugs in my code” (Respondent 43)

Finally, most respondents reported satisfaction with 
the high-level libraries available to them (49% SA, 25% 
A), i.e., they did not feel that a lack of high-level libraries 
was a hindrance to progress.

We may ask then whether existing tools are catering 
sufficiently for the time-demands of creative program-
mers, given that significant time is spent in an explora-
tory state. For example, it may be that tools that allow 
breaking out of a programming mode of activity and into 
a design mode of activity would be useful. Further study 
into this area, could involve prototyping and user-testing 
such a tool to understand its efficacy. 

4.2.Sources of knowledge and approaches  
to problem solving

We asked respondents about the different ways in which 
they inspected their own programs, considering graphs 
and statistics, abstract visualisations and indirect quanti-



xCoAx 2014 47

tative measures such as entropy. The dominant approach 
identified in responses was abstract visualisation (49% 
SA, 15% A) (the example we give above of abstract visuali-
sation is the visualisation of mechanical properties such 
as velocity vectors, although we did not offer specific ex-
amples to respondents), which the majority of respond-
ents used, though all methods received above neutral 
average responses. We also looked at how people used 
personal communication and other knowledge resources 
to better understand their systems. We found a greater 
tendency to solve problems alone (47% SA, 39%A), e.g., us-
ing deduction or trial and error, rather than seeking help 
directly (34% SD, 16% D) or on forums (56% SD, 21% D). 

We do not have data on regular programming practice 
to compare this to. Logically, individual problem solving 
must be more common than consulting forums, since 
it is necessary to try and solve a problem before ask-
ing for help. However, the lack of use of forums may be 
related to the idiosyncrasy of systems, and the loosely-
defined nature of problems in this context, that would 
make it harder for others to get involved. As above, there 
is also a distinction to be made, as well as an overlap, 
between programming problems and design problems. 
Respondents generally agreed that the idiosyncrasy of 
their systems limited the value in seeking help. A study 
of creative coding forums could be used to reveal more 
information about the level at which individual design 
issues are raised.

4.3.Approaches exploration

Artistic creativity is often described as exploratory, and a 
number of personal accounts of creativity in the digital 
arts known to the authors emphasise search as a core 
process. One comment from a respondent expresses a 
common scenario for creative coders familiar to the 
authors:

“I was hoping to get sequences that were on the ‘bor-
derline’ of randomness and predictability. In fact, the 
series almost always ended up too random.” (Respond-
ent 7)

Anecdotally, we have noticed in our own work that it 
is common to have expectations of specific phenomena 
that do not materialise easily in practice. It may then be 



xCoAx 2014 48

common to have a mismatch between expectation and 
outcome. It would be reasonable to guess that the ex-
pectation was too great. But it could also be that in such 
cases the programmer is actually close to achieving their 
goals but without the required tools or methods to ulti-
mately find the desired solutions. 

Other approaches are more pragmatic in that there 
is no search for an ultimate configuration, only for good 
candidates, which can be integrated simply by switching 
between states: 

“I actually ended up using several different permuta-
tions of the flocking system in the one work.” (Re-
spondent 43)

A large proportion of participants (66% SA, 24% A) re-
ported that one motivation for using their chosen com-
plex system was that it was a good generator of variation. 
The sentiment may therefore be common to a wide-
range of creative computing objectives, typical in the 
practice of ‘generative art’. Techniques for rapidly gener-
ating variation, and doing so for a wide range of aesthetic 
objects, may therefore be the most currently useful tools 
in the creative programmer’s toolkit. Finally, respondents 
tended to agree that batch processing in their search for 
solutions was within their capacity (59% SA, 19% A), and 
a moderate number reported a willingness to use batch 
processing (43% SA, with an even distribution across the 
rest of the scale).

4.4.Types of creative coder

Based on our own experience we hypothesised that a 
distinction may exist between two prototype styles: an 
information-seeking approach which emphasised the 
need to manage the complexity of the system through 
analysis, valued tools that supported this, and sought 
additional knowledge about systems; and an explora-
tive approach which emphasised an intuitive iterative 
creative cycle with a focus on visualisation. This latter 
type may correspond to the archetype of the creative, 
‘bricoleur’ programmer (McLean and Wiggins 2010), and 
closer resemble the artistic practice of a painter, sculptor 
or composer, who is engaged in a tight coupling of action 
and response with their artistic material. This is suggest-
ed in a comment by one such practitioner:



xCoAx 2014 49

 “I regard the creation of algorithms as similar to a tra-
ditional compositional activity… understanding can be 
intuitive and ‘musical’. ” (Respondent 96)

The former type resembles a more traditional view of 
an engineering approach, but could be more exploratory 
than software development in non-creative domains, 
distinguished by an openness to the final outcome. 

The same participant also stated:

“I don’t always know exactly how the system will work 
when finished; and I prefer not to aim for a precon-
ceived goal.” (Respondent 96)

This may be distinctive of an exploratory approach, 
but we suspect that it is not actually the distinguishing 
feature between approaches – both approaches could 
accommodate an open-mindedness towards the final 
outcome. 

In fact, the numerical results did now reveal clear-cut 
distinctions between types of practice, but they did show 
a wide range of responses, as well as significant correla-
tions between sets of responses to those questions that 
asked whether better tools were needed to enhance crea-
tive search. According to these correlations, participants’ 
level of contentment with their development environ-
ment was not specific to any particular improvements, 
but rather generic. However, there was no correlation, 
positive or negative, between how advanced people’s use 
of analysis tools was and their recognition of a need for 
better analysis tools or methods. 

These results suggest that there is no neat distinction 
between information-seeking and intuitive approaches, 
but do support the idea that some programmers are 
content with methods for discovering information whilst 
others desire improved support tools. This may include 
different information-seeking needs. We therefore sug-
gest that there is good reason to seek innovative and 
diverse ways to support creative coders with informa-
tion about the systems they are coding. We also propose 
that further research should continue to try to identify 
distinct strategies for handling complexity, given our 
wide-range of responses, and to further understand how 
practitioners define goals and go about arriving at out-
comes with respect to those goals.



xCoAx 2014 50

5.Conclusion

This study takes a first detailed look at the way creative 
coders manage complexity in their practice. Our results 
provide pointers for how to think about categorising 
and understanding creative coding practice, indicating 
a range of approaches to handling complexity. We have 
summarised four areas where we feel further research 
could be carried out into how creative coders work and 
what tool designs would support them. We have briefly 
discussed further questions, and possible implications for 
future creative coding tools. 

The following conjectures are not conclusive given 
the current results but are at least supported by them 
and worthy of further study: exploratory search is a 
major component in creative coding which could be 
better supported by allowing it to take place in a non-
programming design phase; additional and varied forms 
of feedback may provide one way to enhance the search 
process, and a range of distinct information-seeking 
strategies should be considered; the generation of varia-
tion is currently a key motivator for creating with code, 
and is perhaps a greater focus for creative practitioners 
than discovering sweet-spot states, possibly because the 
latter is harder to achieve. 



xCoAx 2014 51

References
Bown, Oliver and McCormack, Jon. “Taming Nature: Tapping the creative 

potential of ecosystem models in the arts”, Digital Creativity, 21(4), pp. 215–
231, 2010.

McCormack, Jon. “Facing the future: Evolutionary possibilities for human-
machine creativity.” The Art of Artificial Evolution. Springer, Berlin, 2008. 
pp. 417-451.

McCormack, Jon and Bown, Oliver. “Life’s what you make: Niche Construction 
and Evolutionary Art”. Springer Lecture Notes in Computer Science, 
Proceedings of EvoWorkshops, M. Giacobini, et. al. (eds), LNCS 5484, 
pp. 528–537, 2009.

McLean, Alex, and Wiggins, Geraint. “Bricolage programming in the creative 
arts.” 22nd annual psychology of programming interest group, 2010.

Mitchell, Mark, and Bown, Oliver. “Towards a creativity support tool in 
processing: understanding the needs of creative coders.” Proceedings of the 
25th Australian Computer-Human Interaction Conference: Augmentation, 
Application, Innovation, Collaboration. ACM, 2013.

Sims, Karl. “Evolving virtual creatures.” Proceedings of the 21st annual 
conference on Computer graphics and interactive techniques. ACM, 1994.

Turkle, Sherry, and Papert, Seymour. “Epistemological pluralism: Styles and 
voices within the computer culture.” Signs 16.1: pp. 128-157. 1990.


