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This method paper explores the creation of a pattern with 
parallel curves on a machine knitted tube in the frame 
of an artistic research project. Using modular arithmetic 
and the software Processing, the initially empirically gen-
erated pattern is analyzed and simulated. The results are 
then used in order to create intentional iterations of the 
parallel curve pattern, determining the winding of the 
yarn for dyeing and the lengths of the yarn strands. The 
paper draws a connection from a craft based technique 
(knitting) to mathematics.
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1.History and Context

This project took its starting point within the context of 
Huijnen’s research and art practice that investigates the 
mouth, speech and affect from a physiological, histori-
cal and feminist perspective. Her goal to create a knitted 
tube evoking aspects of the human mouth and esophagus 
(gullet) would lead to a deeper investigation of circular 
knitting, yarn dyeing and mathematical principles. 

For this project Huijnen had access to an antique 
Creelman Brothers Money-Maker circular sock knitting 
machine. The Creelman Brothers had founded their knit-
ting machine company in 1876 in Georgetown, Ontario 
(Canada) and in 1893 the first Money-Maker, one of sev-
eral other circular knitting machines designed for use in 
the home, came to the market. Those knitting machines 
are a manifestation of the early years of the industriali-
zation process and of factory mechanization. (Terry 2010)

Huijnen’s motivations for using this knitting machine 
were twofold. It provided a technical benefit because it 
worked fast and produced regular stitches (working the 
machine still required concentration, precise counting 
and awareness for its failures). The second motivation 
was the fascination for a machine doing a ‘typical’ female 
work and this way embodying two conventionally differ-
ently gendered work spheres. While writing this paper 
the authors had realized that the questionable existence 

Fig. 1 Working with the Money-Maker 
sock knitting machine.
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of gendered work spheres had partly reached within their 
own collaborative process. Excluding the artistic concep-
tion of the work, Huijnen realized the knitting related 
part of the project and Wanner the mathematical part.

2.Artistic Goals 

The goal of Huijnen’s art project lied in creating a pat-
tern on a knitted tube that would visualize the peristaltic1 
movement of food through the esophagus. Looking for a 
way to reference this process of muscular contractions, 
schematic representations of the peristaltic movement 
served as visual reference. 

They abstracted the fleshy and slippery aspect of the 
human gullet, transformed it into a drawn tube with 
waved outlines and a limited colour palette. For the 
knitted tube a similar level of abstraction should be 
obtained. Without using a descriptive colour palette, the 
reminiscence of the gullet should function on a symbolic 
level through a periodic, cyclic or wave pattern and a 
reduced use of colour: a dark stain on naturally white 
sheep yarn.

In addition, Huijnen wanted the pattern to emerge 
from the ball of yarn itself, instead of using two differ-
ently colored yarns to create a predefined pattern. An 
immediate correspondence between the original ball and 
the resulting tube could conceptually stand for the trans-
formative process of digestion. Also when looking closely 
at the knitting movement of the sock machine needles, 
one can observe how the yarn is continuously grasped by 
the needles and pulled into a tube. One can then imagine 
why the opening and closing latches of the needles are 
called ‘tongues’. (Iyer, Mammel and Schäch 1991, 54)

In order to create patterns that would be intrinsic to 
the ball of yarn, Huijnen decided to dye the yarn in a 
straightforward way: one half of a yarn ball was dipped 
in hair dye as schematized in figure 3. Then the yarn was 
dried and machine knitted into a tube. 

The dyed yarn strand can be expected to consist of 
dashed lines with increasing length, as illustrated in 
figure 4.

Fig. 2 Peristalsis (schematic).

1 The peristaltic movement or peri-
stalsis is a muscular contraction that 
proceeds in waves and pushes the 
bolus of food towards the stomach.

Fig. 3 Dyeing of yarn ball (schematic).

Fig. 4 The presumed pattern on the 
yarn.
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The knitted pattern emerging from this process and 
its reiterations will be presented in the following parts of 
this paper. The focus will be on the calculation and com-
prehension of the empirically generated patterns. The ar-
tistic aspect of the project will not be discussed in detail.

3.Patterns Produced

The first generated pattern exposed a color gradient 
from white to brown between the two ends of the tube 
as shown in figure 6. The yarn ball placed in front of the 
tube in figure 6 visually demonstrates to the art viewer 
how the yarn ball was stained. Analyzing the pattern, it 
became clear, that only the outer strands of the yarn ball 
had been colored, as it is illustrated in figure 5. 

In a second iteration, another yarn ball was dipped in 
hair dye, with an effort to stain the entire half. The dye-
ing of the yarn is both influenced by the fluidity of the 
dye and the absorbing quality of the yarn. When dyeing 
yarn while it’s wet, the color diffuses further along the 
yarn strands which explains the varying color intensities 
of the patterns that follow. 

The result of the second tube (figure 7) surprised. In-
stead of having a more pronounced color gradient from 
white to brown, another phenomenon had occurred: a 
delicately drawn pattern of 4 and further up 3 parallel 

Fig. 5 Dye not fully penetrating into 
yarn ball, thus leaving a large inner 
section of the yarn entirely white 
(schematic).

Fig. 6 Tube and Yarn Ball, 2012. First 
generated tube with stained ball of 
yarn Fig. 7 Second tube
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curves (some of which on the invisible part on the back 
side of the tube) could be distinguished. How had this 
pattern been created? 

4. A Mathematical Model of Knitting in the Round

Discussing this unexpected phenomenon between the 
authors, it was decided to use the visualization software 
Processing to simulate the generative process leading to 
these patterns. The authors were curious, whether the 
patterns could be reproduced in this simulation, and if it 
would be capable of making predictions and being used 
as a design tool to anticipate further iterations.

The following sections will introduce the mathematics 
and simulation assumptions step by step.

4.1 Mathematics and Knitting

In her book Häkeln + Stricken für Geeks (Crocheting and 
Knitting for Geeks), DIY researcher Verena Kuni describes 
parallels and connections between mathematics, compu-
tation and knitting. Kuni states that counting and num-
bers decide on the execution of the knitwear. 

Increasing, decreasing, colored and other patterns – all 
this is applied mathematics with a computational ref-
erence; a crocheting or knitting instruction can rightly 
be considered an algorithm. (Zunehmen, abnehmen, 
Farb- und andere Muster – alles das ist angewandte 
Mathematik mit informatischem Bezug; eine Häkel- 
oder Strickanweisung kann mit Fug und Recht als Algo-
rithmus bezeichnet warden.) (Kuni 2013, 9-10) 

In her research, mathematician and textile artist Ellen 
Harlizius-Klück reveals a similar and more ancient rela-
tionship between mathematics and craft. She describes 
weaving since Greek Antiquity in relation to dyadic arith-
metic, the arithmetic of odd and even numbers. (Har-
lizius-Klück 2008, 2) Stating that all weaving is done in 
dyadic terms, the only choice being between “zero (warp-
thread down) and one (warp-thread up)” (Harlizius-Klück 
2008, 5-6) she accordingly relates the history of weaving 
to the origins of computing and the fitting of a pattern 
into a woven fabric to mathematic calculations of nu-
meric divisibility. In analogy to weaving, knitting could 
also be described as binary, with a choice between a purl 
and a knit stitch. 
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As far as knitting in the round is concerned, Verena 
Kuni introduces modular arithmetic (Kuni 2013, 9-10), a 
field of mathematics suited to describe repetitive patterns 
on objects knitted in the round – usually socks – and 
refers to the knitting projects of mathematician Sarah-
Marie Belcastro. Belcastro’s pattern of striped Sublimation 
Socks for example is based on a sequence of integer num-
bers. (Belcastro 2012) In a process between arithmetic and 
trial-and-error, the pattern is adapted to the shape and 
design of the socks. An equation for the calculation of the 
sock rows is also provided.2 

Huijnen’s pattern, empirically discovered, directly 
relates to these mathematical sock knitting patterns and 
modular arithmetic.

4.2 Modeling a Pattern with Vertical Stripes

The further investigation will rely on the book Mak-
ing Mathematics with Needlework by Belcastro and her 
colleague Carolyn Yackel. Belcastro and Yackel present 
modular arithmetic as an opportunity for a designer to 
“create a pattern that looks complex but is simple to ex-
ecute.” (Belcastro and Yackel 2007, 95) 

They introduce two essential modular dimensions: 
the row length lr – the length of yarn needed to complete 
one row – as well as the pattern length lp – the length of 
yarn needed until the pattern repeats itself. If the pattern 
is supposed to repeat itself on every row, the row length 
lr needs to be an integer multiple n of the pattern length 
(93), so that a resonance (or matching) occurs between 
the two modular dimensions. 

lr = n · lp (n ∈ Z)

In our case, the circumference of the knitted tube was 
measured to be 70 cm.3 To verify our hypothesis, that the 
pattern will repeat itself in every row, we chose a cylin-
drical winding to result in stained yarn bits of a pattern 
dividing the row length lr = 70 cm. To obtain n = 4 vertical 
stripes, a pattern length lp = 17.5  cm has to be generated, 
by winding yarn around a cylinder of d = 5.6 cm diam-
eter, as figure 8 illustrates.

lr = 4 · lp = 4 · π · d 

Figures 9 (computer simulation) and 10 (photo of 
knitted tube) show how this pattern was confirmed in 

3 Corresponding to a row length of 60 
stitches this results in a conversion 
factor of about 1.17  cm per stitch. Note 
that due to the flexibility and softness 
of the yarn material, these measures 
are approximate and slight variations 
are to be expected.

2 On the crafters forum Ravelry, her 
pattern as well as the mathemati-
cal equation behind the socks can be 
downloaded http://www.ravelry.com/
designers/sarah-marie-belcastro

Fig. 6 Cylindrical winding and dyeing

http://www.ravelry.com/designers/sarah-marie-belcastro
http://www.ravelry.com/designers/sarah-marie-belcastro
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a simulation and verified by actually knitting it. The 
knitted version shows roughly vertical lines with some 
variations. The authors attribute the zigzag variations to 
varying tightness and the overlapping of thread when 
winding the yarn around the cylinder. This may provide 
an account of the accuracy limits of the method.

4.3.Modeling a Pattern with Diagonal Stripes

Belcastro and Yackel then suggest a way of producing a 
pattern of diagonal stripes based on a simple counting 
algorithm:4

Suppose we wanted to have diagonal stripes advancing 
across the sock […]. We could achieve this by having a 
pattern length of 61, with a pattern consisting of a block 
of navy followed by a block of white. The shift creating 
the advance arises because 61 ≡ 1 mod 60. […] To have 
the diagonal going the other direction, use a pattern 
length of 59. (95)

Based on the insight that “when lp does not divide lr, 
the pattern does not ‘line up’ from one row to the next” 
(95), Huijnen chose a pattern length of 18  cm, result-
ing from winding yarn around a cylinder of diameter 
5.75 cm. With these parameters, a pattern of 4 diagonal 
stripes was expected, slightly shifted by an offset of 2 cm 
in each row (or by about 5 stitches every 3 rows).5

(lp · n) ≡ offset mod lr

or with numbers:

(18  cm · 4) ≡ 2  cm mod 70 cm

5 Modular arithmetic was developed 
for integer numbers, and works well 
with stitches – a countable entity that 
is represented well by integers. Our 
method however presents patterns of 
a continuous length range, and is not 
limited to integers. The authors bend 
the mathematics a bit here, but their 
point can be made with both integer 
and floating-point numeric values. 

Fig. 9 Pattern with straight lines, the 
trivial case of the computer simula-
tion Fig. 10 Pattern with straight 
lines, some variations occur

4 Belcastro and Yackel’s pattern was 
to be obtained with yarns of two dif-
ferent colors: “In order to make a pat-
tern using colors, at some point more 
than one color of yarn must be used 
when making the loops.” (92) 
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Figures 11 and 12 show how this pattern was confirmed 
in a simulation and verified in the knitting machine. The 
verification with the knitting machine shows variations 
in the slope of the diagonal stripes, which the authors at-
tribute to the same accuracy limits mentioned earlier.

4.4 Modeling a Pattern with Varying  
Line Lengths

With this work done, we can proceed to our main mod-
eling situation: the attempt to generate a periodic or 
cyclic pattern based on dyeing half a ball of yarn. In the 
model, the yarn ball is represented with a flat Archi-
medean spiral.6 The ball of yarn is immersed halfway 
as illustrated in figure 3, so that subsequent white and 
stained bits of yarn have the same length. The color 
(white or stained) at a specific point on the circular tube 
will be a function of:
•  the specific point x along the yarn
•  the pattern with varying pattern lengths lp(x) along the 

yarn
•  the row length lr of the tube 

Modular arithmetic is not directly applicable in this 
case, because the pattern length is not constant, but will 
increase from beginning to the end of the yarn, as fig-
ure 4 illustrates it. However, a resonance – an area with 
locally matching patterns – can be predicted to occur 
around areas x0 of the thread, where the row length lr is 
an integer multiple of the pattern length lp. 

x ~ = x0 | (lp(x0) · n) ≡ 0 mod lr

With a row length of 70 cm, we expect this resonance 
to occur for pattern lengths lp of 10 cm (n = 7), 11.7 cm (n 

6 The spatial dimension of the spheri-
cal ball of yarn is neglected with this 
assumption. While this may seem a 
drastic abstraction, it will qualitative-
ly predict a tube based on a dashed 
thread, with increasing dash lengths.

Fig. 11 Pattern with diagonal lines, 
obtained by offsetting pattern- and 
row lengths. (simulation) Fig. 12 Pat-
tern with diagonal lines, photograph 
of tube
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= 6), 14 cm (n = 5) etc. Our model does not have enough 
quantitative prediction power to predict the exact points x 
along the thread. But pattern lengths along the yarn will 
be between 0 and d · π (d is the diameter of the yarn ball).

Both the computer model based on the assumption 
of the Archimedean spiral, as well as the resulting tube 
confirm these conclusions: figures 13 and 14 show a tube 
with the parallel curve patterns around specific points, as 
well as dense almost horizontal lines in between. In both 
the simulation and the photograph of the actual knitted 
tube, the density of curve patterns increases from top to 
bottom. This corresponds to the knitting direction from 
the outer windings of yarn to the inner ones, in which 
the pattern length of the stained stretches decreases. In 
between these decisive resonance patterns, the parallel 
curves become almost horizontal lines, before they ap-
proach a point of resonance again.

4.5 Towards the Desired Pattern

The pattern obtained with a ball of yarn shows a progres-
sion from the outside to the inside of the yarn ball: there 
is an increasing fragmentation of shorter and shorter 
lines (pattern lengths). To obtain a periodic pattern, it 
is advisable to select a range of pattern lengths yielding 
interesting patterns:

lp(xmin) < lr / n < lp(xmax)

Fig. 13 Computer simulation Fig. 14 
Knitted tube with several parallel 
curve patterns
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Then several pieces of yarn have to be wound in this 
way, so they all obtain pattern lengths between these 
boundaries. Adding these yarns in series will then result 
in the desired pattern. Further research is needed to iden-
tify suited yarn winding methods. For now, we suggest to 
proceed with a winding around a truncated cone with a 
lower diameter lp(xmin)÷π and bigger diameter lp(xmax)÷π.

5. Further Patterns and Outlook

In order to create a composed knitted tube where the 
parallel curve pattern reoccurs in a cyclic and customized 
manner further experimentation and research will be in-
vested in a more consistent winding of the yarn through 
a mechanical yarn winder and the specific design of 
winding objects.

Still another phenomenon caught the authors’ atten-
tion upon close observation of one of the knitted tubes. 
One could notice slight distensions within the outlines of 
the tube, as can be seen in figure 17. These can be due to 
knitting with yarn that is still slightly wet, taking breaks 
during the knitting process and thus overstretching the 
yarn while it is fitted onto the needles of the knitting 
machine. As other effects that occurred empirically dur-
ing the process of this project, this effect promises in a 
further step to be systematically developable into a shape 
not unlike the desired peristaltic tube. 

Fig. 17 Detail of knitted tube showing 
an overstretching

Fig. 16 Periodic tube, composed of 3 
subsequent threads of yarn wound up 
according to the procedurein figure 15 
around an area of resonance.

Fig. 15 Winding around a truncated 
cone.
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